Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multiscale simulations.

نویسندگان

  • Andreas Heyden
  • Hai Lin
  • Donald G Truhlar
چکیده

In many applications of multilevel/multiscale methods, an active zone must be modeled by a high-level electronic structure method, while a larger environmental zone can be safely modeled by a lower-level electronic structure method, molecular mechanics, or an analytic potential energy function. In some cases though, the active zone must be redefined as a function of simulation time. Examples include a reactive moiety diffusing through a liquid or solid, a dislocation propagating through a material, or solvent molecules in a second coordination sphere (which is environmental) exchanging with solvent molecules in an active first coordination shell. In this article, we present a procedure for combining the levels smoothly and efficiently in such systems in which atoms or groups of atoms move between high-level and low-level zones. The method dynamically partitions the system into the high-level and low-level zones and, unlike previous algorithms, removes all discontinuities in the potential energy and force whenever atoms or groups of atoms cross boundaries and change zones. The new adaptive partitioning (AP) method is compared to Rode's "hot spot" method and Morokuma's "ONIOM-XS" method that were designed for multilevel molecular dynamics (MD) simulations. MD simulations in the microcanonical ensemble show that the AP method conserves both total energy and momentum, while the ONIOM-XS method fails to conserve total energy and the hot spot method fails to conserve both total energy and momentum. Two versions of the AP method are presented, one scaling as O(2N) and one with linear scaling in N, where N is the number of groups in a buffer zone separating the active high-level zone from the environmental low-level zone. The AP method is also extended to systems with multiple high-level zones to allow, for example, the study of ions and counterions in solution using the multilevel approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum mechanical investigation of 4-hydroxy phenyl azobenzene adsorption on the boron nitride nanotubes

In this study, the adsorption of 4-hydroxy phenyl-azobenzene on the surface of (4, 0) zigzag open-end boron nitride nanotube (BNNT) has been investigated by quantum calculations. In order to find the preferred adsorption site, different positions and orientations were considered. The impacts of donor-acceptor electron delocalization on the structural and electronic properties and reactivity of ...

متن کامل

Quantum mechanical investigation of 4-hydroxy phenyl azobenzene adsorption on the boron nitride nanotubes

In this study, the adsorption of 4-hydroxy phenyl-azobenzene on the surface of (4, 0) zigzag open-end boron nitride nanotube (BNNT) has been investigated by quantum calculations. In order to find the preferred adsorption site, different positions and orientations were considered. The impacts of donor-acceptor electron delocalization on the structural and electronic properties and reactivity of ...

متن کامل

Dynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method

The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...

متن کامل

Multiscale Multiphysic Mixed Geomechanical Model for Deformable Porous Media Considering the Effects of Surrounding Area

Porous media of hydro-carbon reservoirs is influenced from several scales. Effective scales of fluid phases and solid phase are different. To reduce calculations in simulating porous hydro-carbon reservoirs, each physical phenomenon should be assisted in the range of its effective scale. The simulating with fine scale in a multiple physics hydro-carbon media exceeds the current computational ca...

متن کامل

Quantum Mechanical Approach for the Catalytic Mechanism of Dinuclear Zinc Metallo-β-lactamase by Penicillin and Cephalexin: Kinetic and Thermodynamic Points of View

Metallo-β-lactamases (MβL) catalyzing the hydrolytic cleavage of the four-membered β-lactam ring in broad spectrum of antibiotics and therefore inactivating the drug; However, the mechanism of these enzymes is still not well understood. Electronic structure and electronic energy of metallo-β-lactamase active center, two inhibitors of this enzyme including penicillin and cephalexin, and differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 111 9  شماره 

صفحات  -

تاریخ انتشار 2007